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In certain special systems, pertaining to various branches of mechanics and physics, there is no explicitly 

occurring small parameter, but a suitable change of variables will artificially introduce a small parameter 

into the equations of motion. One can then use the Kolmogorov-Arnol’d-Moser Theorem to prove the 

existence of invariant (Kolmogorov) tori, which, moreover, fill the whole of phase space except for a set of 

finite measure (the measure of the whole phase space is infinite). Bounds are obtained for the deformation 

of invariant tori and the relative measure of the Kolmogorov set. It follows from Poincark’s Geometric 

Theorem that in all problems under consideration there exist infinitely many periodic solutions. The results 

of numerical experiments in connection with Ulam’s problem receive their first comprehensive. rigorous 

justification. and analogous propositions are derived for other situations. 

The case of pendulum-type systems is then considered in this context by treating the reciprocal of the 

momentum as the small parameter. This device was first used in connection with the equations of mechanics 

(when momentum = angular velocity) to determine the asymptotic behaviour of fast rotations [l]. In the 

case of Ulam’s problem a small parameter reciprocal to the particle velocity was introduced in [2]. 

This paper generalizes and develops results of [3] which follows from Theorem 1 as a special case. 

INTRODUCTION 

THE RANGE of problems considered here is intimately connected with the question of whether an 

acceleration mechanism analogous to Fermi’s stochastic mechanism [4] can arise in deterministic 
systems, and with an analysis of the stability of conservative systems [S]. 

Complicated questions already arise with respect to the equations 

‘p”+wu* sin v=F(1) (0.1) 

2”+(~u2(t+a~Z)z:-~(t), aXI (0.2) 

which describe oscillators driven by forces F(t) containing many harmonics. The semi-qualitative 
theory and numerical experiments [5, 61 imply that, if F satisfies certain conditions, the oscillator 
will vibrate as if driven by a random force; in other words, the mechanism in operation will be 
analogous to Fermi acceleration and the energy of the vibrations will increase on average in direct 
proportion to time. 

In Ulam’s model [7] of Fermi acceleration, a particle moves between two parallel walls which are 
oscillating periodically; the particle rebounds elastically from each wall. Numerical experiments, 
however, have shown that no acceleration takes place, and the phase plane of the appropriate 
mapping is divided into three regions: (1) a low-velocity region, where the motion is stochastic; (2) 
an intermediate-velocity region, containing islands of stability around elliptic points within the 
stochastic components; (3) a high-velocity region, with narrow stochastic layers in the neighbour- 
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hood of the separatrices are isolated from one another by invariant curves which span the entire 
phase range (see 181). A partial explanation of this phenomenon was given by Zaslavskii and 
Chirikov in 1964. At the same time, the possibility remained that in certain situations the particle 
may accelerate to high velocities [9]. Several publications have investigated a simplified Ulam 
model: the oscillating walls are replaced by fixed walls which, however, react on the bouncing 
particle as if they were oscillating periodically. The results obtained in studies of Ulam’s models, 
exact and simplified, are analogous. 

It will be shown below, in particular, in regard to equations (0. I) and (0.2) with a smooth periodic 
perturbation F and in regard to Ulam’s models, that acceleration to high velocities is impossible, 
and that the Fermi mechanism may operate only over a limited region of the phase space. An 
explanation will also be given for the experimentally observed structure of the phase plane in 
Ulam’s problem (Theorem 2). As a corollary of Poincare’s Geometric Theorem it will follow that 
there exist infinitely many periodic solutions; this will be proved without assuming that the 
equations satisfy the traditional symmetry conditions [lO-133. Applied, in particular, to one of the 
most popular subjects of study-Beletskii’s equation-the results are the strongest possible (see the 
survey article [14]). Moreover, under suitable symmetry conditions, for any relatively prime 
numbers m>O, n the methods of [lo, 12, 131 enable one to prove the existence of one 
2am/n-periodic solution, while by Theorem 3 there are at least two such solutions. 

The impossibility of acceleration is due to the existence of an adiabatic invariant and follows from 
the existence of invariant curves of the recurrence mapping. In regard to Ulam’s problem, this was 
previously pointed out in some physical studies, but rigorous results were lacking up to 1151. It was 
concluded [16] that acceleration cannot occur in the exact Ulam model, but the question of the 
measure of the invariant curves was not discussed and the proof was needlessly complicated. 

Ideas very similar to those put forward here may be found in 117-201, where related results were 
obtained (without estimating the measure of the Kolmogorov set). Among the topics studied are the 
equation X” +2x” = p(t) with a periodic piecewise continuous function p(t) [17]; equations of 
Duffing’s type [18] ( see Sec. 2); a special case of pendulum-type systems [19,20] which has bearings 
on problems of mechanics (see Sec. 2). Authors have hitherto concentrated on determining the 
minimum smoothness necessary for the application of KAM-theory [18, 201, or on proving the 
existence of acceleration in a pendulum-type system in the “non-conservative” case [ 191 (see 
Sec. 2). By studying equations which are periodic in the time t, of the type x” +f(t, x) = 0 under 
some very general assumptions and applying the Poincar~-Birkhoff Theorem [21] to a certain 
recurrence mapping, Jacobowitz ]22] proved an analogue of parts 2 and 3 of our Theorem 3. With 
regard to the equation X” +g(x) = p(t), where g(~)sign(~) increases more rapidly than /xl as 
x-+ a, Ding [23] was also able to prove, subject to a symmetry assumption, that all the solutions are 
bounded; the proof relied on topological arguments concerning the recurrence mapping and did not 
use KAM-theory. 

Our main attention in this paper will be devoted to the measure of the Kolmogorov set and the 
extent of deformation of invariant tori, on the assumption that the system is sufficiently smooth. In 
Sets 1 and 2 we will describe a unified approach to systems of three types, which were considered 
separately in [16-201; incidentally, the proofs proposed in those papers may be simplified 
considerably by using known results on the accuracy of the averaging procedure. 

There are rigorous proofs [24-281 that the acceleration phenomenon is possible and indeed typical 
in various other problems. Iiowever, the phases for the trajectories constructed (or quantities 
analogous to the phases) are strongly correlated, offering some contrast to the stochastic mechanism 
and indicating that no mixing occurs. A similar result will be obtained below in Sec. 6 for a mixed 
Ulam model. 

1. BRIEF DESCRIPTION OF THE MAIN METHODS 

Once a small parameter has been artificially introduced, the systems considered here assume the 
form of Hamiltonian systems with one rapidly rotating phase and two slow variables [2], the role of 
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the fast phase being played by the coordinate or the time. The first situation is that of the systems 
studied in Sec. 2; systems of the second type arise in Sec. 3. Similarly, the Ulam mappings 
.?-+z+E1(Z)+O(&2), z = (p, 4) in Sec. 4 are shown to be exact canonical mappings, close to the 
identity mapping; they may therefore be represented [2] as recurrence mappings for 2n-periodic 
Hamiltonian systems of the second type with a Hamiltonian O(E~)-close to FE, where 

E(z) = ; jP)dp - l~?)dq 

and I(P), 1(q) are the components of the shift I, the integral appearing in the definition of E is 
independent of the integration path (a non-canonical version of this statement will be used in 
Sec. 6). 

In the analytic case the canonical averaging procedure makes it possible to transfer the dependence of the 
Wamiltonian from the fast variable to the exponentially small terms (for details see [2, 29]), that is, to find a 
close integrable system. Then, considering the corresponding recurrence mapping over a period, one uses 
Moser’s theorem on invarient twist curves or (in greater generality) small twist curves [30]. Bounds have been 
established [31] for the measure and deformation in the case of twists, but the results carry over without change 
to the general case of small twists just as Moser’s original proof 1301 (which provided the basis for [31]) also 
carries over. The trajectories that pass through an invariant curve of the recurrence mapping form the required 
torus. 

Henceforth C, , . . . , C,s wifl be constants, (m)’ the operation of averaging over the angular 
variable up and { a}‘@ = (a) - (*)‘+ the operation isolating the purely periodic part. The symbol I/ .I/t.t 
denotes the P-norm, where s is a natural number of w and C” is the space of functions analytic in 
some complex neighbourhood of a real domain. 

2. PENDULUM-TYPE SYSTEMS AND DUFFING-TYPE EQUATIONS 

Pendular-type system. On the direct product 

M=R’ fg) XS‘(z mod 2~) XS’ {S mod Zrr} 

we consider the system x’ = aH/$y, y’ = -aH/ax with Hamiltonian 

if = c Ci (t* I) vi 
i>o 

(2.1) 

where Ci are analytic functions on a torus T* {t, x} . Let c; = 0 for i > n (in mechanics n = 2) and 
assume that c, is independent of x, c, (t) > 6 > 0 for all t. 

Du#ing-type equations. On the direct product 

M=R* 15, y) XS’ {t mod 2x) 

we consider the system with HamiItonian 

H==yVZ+ax”+f(x, t) 

where f(x, t) is a polynomial in x of degree at most IZ - 1 with coefficients which are 27r-periodic and 
analytic in t, a>O, n34 is even. 

In particular, for Duffing’s equation y1 = 4, f(x. t) = bx2 +j? (f)x. 
We now transform from canonically conjugate variables x, y to action-angle variables I, cp for the 

Hamiltonian Ho = y2/2 + ax” ; I, cp may be chosen so that 

t,l[titilt2?~(V), y,jn/rn+a,y(v) 

where X, Y are analytic functions on 
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S’ {cp mod h), I=C,H(Q+W(Z~I) 

In the new variables the Hamiltonian is 

f~=C,-“af”~f(zRX(rpf, t>, cc=2/(&2) 

Thus, the Hamiltonians (2.1) and (2.2) are special cases of the Hamiltonian 
P--L 

/I = C, (t) lKn -1. 
L 

7 Ci (tp Cy) I”” 

1=ll 

(2.2) 

(2.3) 

where cy. = 1 for pendulum-type systems and cx = 2/(n + 2) for Duffing-type equations. 
We introduce new variables J = EZ, r = ~-at, p = fzc~ - 1, using a small parameter F > 0. The 

system 

fp*=aw/ar, I’= -arz/ilq 

becomes 

which has the Hamiltonian 

F = C, (t) 1 “lL + 2 ci (t, (P) ]ia~(~-‘)~ 

i-0 

and contains the slowly varying parameter t (since p > 0). 
According to [29], there exists a canonical substitution (J, cp)-+(J’, cp’), which is O(cQ)-close to 

the identity and dependent on the time t, which reduces the Hamiltonian to the form 
&(J’, t) + Fl (J’, cp’, t), where F,! = O(exp(-C2E -a))C,>O. Let 7; (respectively, T) be the 
recurrence mapping of the system with Hamiltonian Ft, (F,,+Fi) over the period 2%~~a. Then, in 
terms of z, cp’ coordinates, where J’ = C, + 8~. C, # 0, the mapping T is exponentially close to To : 

21 = 2, cpl ’ = q’ +g(z), and 

%I ---_ 
az 

2n a2Fo (J. h) dh 
s dl’ 
II 

Applying Moser’s theorem and returning to I, cp coordinates, we obtain the following result. 

Theorem 1. Let SOL > 1, c,(t) > 6 >O, C, > 0, Then the whole toroidal layer 1 I-I, 1-c C4, except 
possibly a set of relative measure O(exp(-C5) lo/a)) (C,>O), will be covered by Kolmogorov tori. 
Each of the Kolmogorov tori will be enclosed between the tori 

I=I,,*, ~r,-I,t=o((tl‘,l+If’-“). (2.4) 

Corollaries. 1. The entire phase space M, except possibly a set of finite measure, is filled by Kolmogorov tori, 
which carry conditionally periodic motions. 

2. During the motion the variable I may experience only fluctuations of size 0 (1 I /lea + 1) in accordance with 
(2.4). 

Remarks. 1. If the functions ci appearing in the expression for the Hamiltonian (2.3) have only a finite but 
sufficiently large number of derivatives with respect to t, cp, Theorem 1 and its corollaries remain valid, but the 
exponentially small estimate must be replaced by a power estimate: O(] 10 / -“). 

2. Let us assume that the coefficient c,(t, cp) of the leading term in (2.3) depends on cp but is @ose in the 
C”(sSc~o)-norm to a positive function that is independent of ‘p. Then, if s is sufficiently large, Theorem 1 
remains valid (but see Remark l), with the estimate (2.4) replaced by the weaker estimate 
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This is the situation for Duffing-type equations if H,, (the leading terms of H) is H,, = k(t)/2y2+a(t)x”, 
where k(t) and a(t) are close in the C-norm to positive constants. 

3. If the functions c,, , . , c,,_k+l are independent of cp, the estimate (2.4) may be sharpened: 
II?--, 1 = 0[(11,,/+ 1)‘-k”]. 

In particular, for the Duffing equation itself n = 4, f‘(x, t) = bx”+p(f)x and the variable I = C, H,,“4 may 
experience oscillations only of order 0 (1 II “3 + 1). 

We will now describe some examples of pendulum-type systems encountered in mechanics. 

1. Oscillations of a mathematical pendulum with vibrating point of suspension [32]: 

ff=y*/2--c,oZ(l+f(t)) cosz (2.5) 

where f(t) is a 2n-periodic function, x is the angle of deflection and y is the angular velocity of 
rotation of the pendulum. An equation of the type X” + wo2 (1 +f(t) ) sinx: = 0 is also encountered in 
other problems. The system is integrable if either TV, = wo2 = 0 or t-r-2 = 11 {f(t)} ]I C” = 0. 

2. Two-dimensional oscillations of a satellite in elliptic orbit (Beletskii’s equation) [33]: 

*2- p 
[ 2 I+ecosv 

-2(l + ecosv) 
I 

!-(I + ecosv)pcos6 (2.6) 

Here the roles of X, y, t are taken, respectively, by variables 6,p and v that have the following 
meaning: v is the true anomaly of the centre of mass of the satellite in an elliptic orbit of eccentricity 
e, S/2 is an angle characterizing the rotation of the satellite about the radius vector drawn from the 

attractive centre to the centre of mass of the satellite and p = (2 + dS/dv)(l + ecosv)’ is a constant 
times the angular velocity of rotation of the satellite about its centre of mass. The quantity p 
characterizes the mass distribution of the satellite, 1 pi <3. The problem is integrable if ~~ = TV. = 0 
or p2 = e = 0. 

3. The restricted problem of the revolution of a symmetric heavy solid with a fixed point [34]. The 
Euler-Poisson variables in the limit may be expressed in terms of the quantities c mod 21r and q 

corresponding to the X, y variables. 

&=nZ/2+(2h)-‘( rl cos t-!-p sin t sin T) (2.7) 

Here the role of time is played by r = d(2ht’); a2 + p* = 1. The numbers (Y, f3 and h characterize 

the energy and area integrals of the system and q is the projection r of the angular velocity of the 

body onto the axis of dynamic symmetry, divided by V%r. The system is integrable if 

t_~, = (2h)-’ = 0 or k2 = p = 0. 

4. Motion of a mathematical pendulum driven by a periodic torque with zero mean. i The equation 

is q” + 002sinq = f(t), where q is the angle made by the pendulum with the vertical, f(t) is a 
2n-periodic torque and (f)’ = 0. This equation may be expressed in Hamiltonian form with a 
Hamiltonian 

If=‘/~(p+f,(l))z-o**cos q, (2.8) 

where q’ =p+f,(t), fi(t) =jf(t)dt+C,, the constant C, is such that (f)‘=O. The problem is 
integrable if TV, = oo2 = 0 or *2 = [If, (t) IIc. = 0. 

5. The motion of a mathematical pendulum suspended on a cord of periodically varying length 
(Einstein’s pendulum): 

H=p’/ (21’) --(oUz cos q (2.9) 

TBLJROV A. A., Some problems in the dynamics of pendulum-type systems. Candidate dissertation, Moscow State 

University, Moscow, 1984. 
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where q is the angle of deflection, p = 12q’ is the conjugate momentum and I(t) is the length of the 
cord. The system is integrable if ~~ = wo2 = 0 or 

P*=ll(W&0=0. 

Note that examples 1,4 and 5 may be combined. 
In all the examples the relative measure of the complement M* of the Kolmogorov set is at most 

O(exp(-Cs lye I). In examples l-3 and 5 the y variable is the canonical conjugate of the angle of 
deflection, i.e., the angular momentum, which is conserved to within O(ly&‘) (see Remark 3). 

Example 4 has an interesting generalization. Add a term -xp (t) which is 2rr-periodic in f and non-periodic in 
x to the Hamiltonian (2.1); this term characterizes a driving force p(t). In the “conservative” case, when 
(p)’ = 0, when the equations of motion can be written in Hamiltonian form with a Hamiltonian (2.1), proving 
the existence of a Kolmogorov set and the absence of acceleration. In the “non-conservative” case 
(c = (p)‘# 0) it can be proved that there are no invariant tori near the levels y = const, and acceleration occurs 
in all trajectories in the domain of large positive cy (cf. [19]). A similar result for a mixed Ulam model will be 

established in Sec. 6. 
The Hamiltonians (2.5)-(2.9) share the following property: if kl = 0 the dependence on the phase x 

disappears; if ~,z = 0 one obtains the Hamiltonian of a mathematical pendulum 

(to prove this for (2.6), first replace p by p + 2). Using this, one can verify the following facts. 

1. If C,>O, the numbers 2rpi /, 3K 1 CL, are not integers and p2 is small, then the relative measure of the 

set M* in the annulus ]y -yol < C, is at most O(Gexp(-C5z) where z = (yo] + 1; the invariant tori will be 
0 (1 k2 1 z-’ + L$, ) exp( - Csz))-close to the surfaces 

1/2yZ+t1, cos r==const (2.10) 

In Examples 4 and 5, when the Hamiltonian is H = 1/2~y(t)y’+f, (r)y- ~~,2cosx, the last estimate may be 
sharpened to 0 (1 p2 / ze2 + G2 ( exp (- C, 2)). The constant C, > 0 and the O-estimates depend on kl and C, . 

Thus, the full measure of M * is mesM * = 0 (Kp2 1 (to obtain estimates in the domain of small ly ) the phase 
space is divided into domains of three types: neighbourhoods of elliptic periodic solutions, neighbourhoods of 
separatrices of hyperbolic periodic solutions, and annular domains complementary to domains of the first two 
types. For domains of the third type the required estimates follow from [31]; for domains of the second-from 
[35]. 

The proof for domains of the first type uses the fact that an integrable system is reducible to Birkhoff normal 
form, one step of the Birkhoff normalization procedure for the perturbed system and estimates for the 
invariant curves of small twists.) 

2. If pI #O and 2rpi I or 3flui ) is an integer, the above estimates remain valid outside an arbitrary 
neighbourhood of the elliptic periodic solution x - Omod2rr (for IQ <O) or x= rrmod2n (for bi >O). 

3. For small ki the relative measure of M * in the domain I y - y. ) < Cd is at most 0 (qpi / exp (- Csz)), and 
the invariant tori are 0 (/ p, 1 z-’ + Tp, 1 exp (-C 5z )) -c ose to the tori y = const. The constant Cs > 0 and the 1 
O-estimates depend on p2 and C,. Thus mes M* = O(k$& I). 

4. For small p,i and p2 the relative measure of M* in the domain ly -y. 1 <Cd, lye I >2C., is at most 

O(G2/exp(-Cslyal)), and the invariant tori are 0 (I p., p2 / ze2 + mp2 1 exp (- Cs I y. I) )-close to the 
surfaces (2.10). For example 4 and example 5 this estimate may be sharpened to 

0(~~~~21z-2+~~Iexp(-C~ly,,/)). Th e constant Cs > 0 and the O-estimates depend on C, 
It will be proved in Sec. 3 that in the domain / ya) < C, the measure of M * is also 0(mp2 I), and the 

invariant tori are close to surfaces analogous to (2.10). Thus mes M * = 0(mu2 1). 

3. INVESTIGATION OF EXAMPLES l-5 IN THE DOMAIN OF SMALL I.L, AND fi2 AND 

SMALL MOMENTUM y 

The Hamiltonians (2.5)-(2.9) may be written (to within a negligible term) 
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~=‘/~y~(l+g(t))+h(t)~--o~(COQ2+f(1, z)) 

where the 2T-periodic functions g, h and f are analytic functions of p2, with g(t) = 0, f(t, x) ~0, 

h(t) = const when pz = 0. 
Setting 

XZZ~‘f 
5 (h)‘&S-y (g)’ fft, y=y’-W’/(l+(g)‘) 5 

we introduce a time-dependent canonical change of variables (x, y)+ (x’, y’). In the new variables, the system 
is described by the Hamiltonian 

~=‘/*G~‘*-~~*(~os z’ff(t, 2‘, @‘ff 

where I= 0 if f.i,2 = 0; G = I + 6)‘. Introducing a new variable Y = r-ly’, where E > 0 is a small parameter, we 
obtain a Hamiltonian system with canonically conjugate variables x’, Y and Hamiltonian 

F-~-~~/~=F.(~/~GY~-(~~~,,/P)~(co~ ?+[(I, z’, el’))) 

Let C, and C7 be positive constants and /coo/e / <C,. It follows from [2] that for small e and p2 there is a 
canonical change of variables, 0( (w&)* t+))-close to the identity, which is defined in a complex neighbour- 
hood of the real domain j Y ] < CT and reduces F to the form 

F’( I’, t’) +F”( Y, 1’, I) 

F”==O((co”/e)‘@ cssp (-&e-l)) ((:8>o) 

Hence it follows that for small TV = w (,‘, pt, C, the entire toroidal layer / y j < Cd except possibly a set of relative 
measure O(V$T@Ziexp(-Cgs-i)). where F = max (1 woi; C, } . C,>O. is covered by invariant tori of the 
system which are perturbations of the surfaces Gy*i2 - w~:cosx = const (compare with 121, Sec. 6). 

4. ULAM’S MODELS: EXACT AND SIMPLIFIED 

The exact model ]2]. Choose the x axis along the trajectory of the particle and walls. Assume that 

the coordinates of the walls are 2n-periodic smooth functions d, (t), d*(r), d, < dz, where t is the 
time. In the interval between two collisions the particle moves uniformly in a straight line, governed 
by the law x (T) = v (r - t), where v is the velocity and t plays the role of the instant of time at which 
the particle passes the origin. Suppose that after collision with the second wail v and t take values 

(-V’, 8’). Thus, for v> max,/ dz’(t) j, there is a weal-defined mapping A2 : (v, f)-+ (v’, t’). A simiiar 

definition yields a mapping A, : ( v’, t’)-+ (Y”, t’), corresponding to collision with the first wall. 

Investigation of the model reduces to studying what is known as the “exact” Ulam mapping 
A = A, OA2, which is defined for v > v,.,. = 2max, 1 d,’ / + 2max, 1 d2* 1 and maps the half-cylinder 

R+‘{v>v<,} xS’{tmod 2n)into the half-cylinder K = R+‘{v: v>O} x S’{f mod 27r}. It is readily 
shown that A conserves the relative integral invariant v”dt, i.e. it is exact canonical in the 

coordinates I = v2, t mod 21~ (cf. ]2. S]). 
We alter the time-scale by putting t = ET, c’ = E -‘V The mapping A: (J, f)+(.l,f), where 

J = V2/2. in the domain O<C,,,< V< Cl, is exact canonical and O(c)-close to the identity 121, and 

the role of the function E is played by E = n-‘L [2], where L = V(d?- d,) is a well-known 

adiabatic invariant [36]. Therefore, if the d,s are analytic functions then, applying the averaging 
procedure and estimates for the measure and deformation of the invarient small twist curves and 

returning to the original variables, we obtain the following result. 

Theorem 2. Let C,>O. Let mes; be two natural measures defined on the half-cylinder K by the 
two-forms dv’/\dt, i = 1, 2. Then the entire annulus 1 v - v(, I< CA, except possibly a set of relative 

measure mesi = O(exp(-CIZvt,)) (C,,>(J), is covered by invariant curves of the exact Ulam 

mapping. Each such curve is enclosed between level curves L = L ,.z of the adiabatic invariant 

L = v(rf? - d, ) for which 

IL,--&]=0(1) (4.1) 
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Corollaries. 1. The entire domain of definition of the exact Ulam mapping, except possibly a set of 
finite measure mes;, is covered by invariant curves. 

2. During the motion, the adiabatic invariant L of the particle oscillates to the order of O(1). 
Ulam’s mapping A is obviously integrable if di = const and d2 = const. Fix D = (d,)’ - (di >‘> 0 and introduce 

a small parameter p = IJ {di }‘ljcw -I- // {d~}‘j/~‘~. It IS easy to see that the mapping A: (J, t)-+(J, I) will be 
0 (Pe)-close to the twist mapping J-+ J, t -+ t + Z&V- ‘. Therefore, for v(, > C, > 0 the estimates in the theorem 
become respectively 0 (%$ exp( - Cl2 ~0)) 

l&-I,/ -O(~+~~t?xp( --c,pu~)) (4.2) 

To investigate the domain vO> C, we apply the substitution v = EV, where O< Ci?< V< Ci4, F >O is a small 
parameter. If $*JF is large, A is not well defined (the particle may collide twice in succession with the same wall). 
We shall therefore assume from now on that P. < Cl5 e, Cis > 0. After the second substitution V = V,, (1+ FW), 
/ w I< C16, the mapping A becomes 

lu’=lu+o ” ( ) ,c! 

213 22) 
t’=t f ---; - ---- u;+O,(e)+O 

VO I ) 
$ 

where 0, is a term independent of t. Applying the estimates of 1311 and returning to the original coordinates 
(v, t), we see that for small p/e2 the entire annuius Ci3e <v< Ct4e, except possibly a set of relative measure 
O(<~E), is filled by invariant closed curves which are U(V&)-close to the circles v=const and, moreover, 
the O(V&z)-neighbourhood of each circle v = const contains such a curve. 

Corollaries. 1. If the velocity of the particle at some instant of time is very small, it will never exceed a lower 
threshold O(<k). 

2. The entire domain O< v< C,, except possibly a set of measures mesi = O(<uln CL), mesz = O(fu), is 
covered by invariant closed curves of the exact Ulam mapping. The same estimates hold for the domain 
Q<v<+a. 

3. If the velocity of the particle at some instant of time is such that vO> Ci7<~, where C,,>O is a constant, 
then during the motion the velocity will only oscillate by a relative amount of Q(<p). 

The simpl~~~d rn~de~. Let us assume now that the walls are stationary~ at coordinates d,“<&“, 
but when the particfe collides with them they act on it as if they were oscillating as described by 
x = d,(t), where d, (t), d2 (t) are smooth functions. Corresponding to this simplified model we have 
what is known as the simplified Ulam mapping A, which is constructed in the same way as the exact 
mapping. This mapping A is exact canonical in coordinates I = v, t (cf. [8]). After the substitution 
v = F-‘V the mapping A : (V, t)-+(V, t) becomes exact canonical and O(E)-close to the identity. A 
simple calculation shows that the function E in this case may be defined as 

E = nF1(d2--dl +DlnV) = r-l DlnE+rr-‘G, where G = dz-d, + Dlnv, D = d2’--dlo is the dis- 
tance between the walls It is obvious that all the arguments and estimates in regard to the exact 
Ulam mapping go through without change. In the estimates (4.1) and (4.2) we now have 

L=exp (G/D) =u exp ((d~_d,~/D). 

5 _ . PERIODIC SOLUTIONS 

The existence of the Kolmogorov set and Poincare’s Geometric Theorem [36] imply the following 
theorem. 

Theorem 3. If IZ, m are relatively prime numbers, m>O, then any pendulum-type system has at 
least two distinct 2nm-periodic solutions such that x (2nm) = x(0) + 2nn. 

2. For Duf~ng-type equations we demand in addition that n/m> C,,>O. In that case there exist 
two Znm-periodic solutions such that q(2mm) = q(O) + 27~2. 
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3. Let A be the (exact or simplified) Ulam mapping. If n and m are relatively prime numbers such 
that m/n > Ck8>0, then the mth iteration A” will have at least 2m fixed points such that Z-+1, 
t-+t+2~n (for large I the mapping A has only a slight effect on f; that is why the expression 
t-+t+2wz has an exact meaning). correspondence to these are two Zwn-periodic motions of the 
particle. 

Remark. The Kolmogorov tori lie in the closure of the set of periodic solutions [X3]. Therefore, by Theorems 
1 and 2, the entire phase spaces of the systems under consideration, with the possible exception of a set of finite 
measure, are densely filled with periodic trajectories. 

6. THE MIXED ULAM MODEL 

One can combine the exact and simplified models, assuming that the walls oscillate according to a 
law x = d:(t), but upon collision act as if they were oscillating according to a law x = d;(t). The 
arguments presented below also hold if di’ (t) are 2n-periodic functions with non-zero averages. A 
relativistic mixed Ulam model has been considered previously [28]. 

Theorem 4, If k is the quotient v(t+ 2~)/~(r) of the velocities of the particle at times 27r apart, 
then 

(by the velocity at the instant of collision we mean the velocity immediately before or after the 
collision). 

Proof It can be shown that the corresponding mapping A: (V, t)+ (V, t) is O(FZ)-close to the 
mapping in time 2~ - / l/v(t) j along the trajectories of the autonomous system v’ = -(d2’ - d,‘), 
t’ = (C&O - d,“)lv, where the prime stands for differentiation with respect to the new independent 
variable. This system reduces to the trivially integrable equation 

din vldt- -jd,‘-d,‘)/(d,“-d,“) 

which implies the required result. 

Repark. If the functions f, f, and 1 in Examples 1,4 and 5, or the functions d; introduced in connection with 
the exact and simpiified Ulam models, have a sufficiently high (but finite) degree of smoothness, all the results 
remain valid, but the exponentially small estimates should be replaced by power estimates. Theorem 4 is true 
on the assumption that the second derivatives of d,” and di with respect to time are continuous; if only the first 
derivatives are continuous, the estimates 0 (l/v (t) ) must be replaced by a quantity that converges uniformly in 
t to zero as v(r)-+ co. 
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